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ABSTRACT
BACKGROUND: Somatic mutations arising from the brain have recently emerged as significant contributors to
neurodevelopmental disorders, including childhood intractable epilepsy and cortical malformations. However,
whether brain somatic mutations are implicated in schizophrenia (SCZ) is not well established.
METHODS: We performed deep whole exome sequencing (average read depth . 5503) of matched dorsolateral
prefrontal cortex and peripheral tissues from 27 patients with SCZ and 31 age-matched control individuals, followed
by comprehensive and strict analysis of somatic mutations, including mutagenesis signature, substitution patterns,
and involved pathways. In particular, we explored the impact of deleterious mutations in GRIN2B through primary
neural culture.
RESULTS: We identified an average of 4.9 and 5.6 somatic mutations per exome per brain in patients with SCZ and
control individuals, respectively. These mutations presented with average variant allele frequencies of 8.0% in pa-
tients with SCZ and 7.6% in control individuals. Although mutational profiles, such as the number and type of mu-
tations, showed no significant difference between patients with SCZ and control individuals, somatic mutations in
SCZ brains were significantly enriched for SCZ-related pathways, including dopamine receptor, glutamate receptor,
and long-term potentiation pathways. Furthermore, we showed that brain somatic mutations in GRIN2B (encoding
glutamate ionotropic NMDA receptor subunit 2B), which were found in two patients with SCZ, disrupted the
location of GRIN2B across the surface of dendrites among primary cultured neurons.
CONCLUSIONS: Taken together, this study shows that brain somatic mutations are associated with the patho-
genesis of SCZ.

https://doi.org/10.1016/j.biopsych.2021.01.014
With a prevalence ofw1% worldwide, schizophrenia (SCZ) is a
neurodevelopmental disorder characterized by delusion,
hallucination, and cognitive impairment (1). SCZ is also known
to be associated with neural network dysfunction and
abnormal gene expression in the dorsolateral prefrontal cortex
(DLPFC) (2–5). Regarding disease etiology, genetic variants are
thought to be major contributors to SCZ (6), and previous
genetic studies have documented SCZ-associated or -causing
germline variations using large-scale whole exome or genome
sequencing and genome-wide association studies (7–9). These
germline mutations have been shown to be functionally linked
to NMDA receptors, synapse, immunity, and central nervous
system development (10). Notwithstanding, although previous
studies have been able to describe important contributions of
germline mutations to SCZ (9,11–13), germline mutations in
SCZ-relevant genes and loci account for only 3.4% to 23% of
all sequenced patients with SCZ (8,14–16), and a substantial
portion of patients with SCZ remain genetically unexplained.

Unlike germline mutations that occur in sperm or eggs and
are inherited from parents to their offspring, somatic mutations
arise after fertilization and can exist as mosaic patterns in the
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whole body or present within localized tissues at very low
variant allele frequencies (VAFs) (17,18). Such mutations are
likely to go undetected even in advanced genetic analysis of
blood, saliva, or other peripheral tissues. However, we and
other groups have recently found that low-level brain somatic
mutations indeed exist and contribute to various neurological
disorders, including intractable childhood epilepsy and Alz-
heimer’s disease (AD), of previously unknown genetic etiology
(19–27). For example, brain somatic mutations in mTOR
pathway genes present at VAFs less than 1% in focal cortical
regions were shown to be sufficient to cause spontaneous
behavioral seizures and neuronal abnormalities representative
of focal cortical dysplasia (19,20). In addition, Fullard et al.
performed whole exome sequencing (WES) of 9 patients with
SCZ and 10 control individuals with read depths of 2503 in
brain and 503 in matched muscle tissues. This low depth of
WES detected only 25 somatic single nucleotide variations
(SNVs) in SCZ brain tissues, which are too few to probe the
association of brain somatic mutations with SCZ (28). So far,
how brain somatic mutations are associated with SCZ has
remained elusive.
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Here, we performed deep WES in matched brain (DLPFC)
and peripheral (mostly liver) tissues from 27 patients with SCZ
and 31 age-matched control individuals. To accurately identify
low-level somatic mutations in the brain, we applied high-
depth sequencing (average throughput depth 569.73) and
further validated random brain somatic mutations using inde-
pendent ultradeep targeted amplicon sequencing (TASeq)
(749452.43) and Sanger sequencing. We then sought to
document the engagement of noted brain somatic mutations in
SCZ pathogenesis by analyzing significant biological pathways
enriched from genes with putatively deleterious somatic mu-
tations. We further validated the biological function of a
recurrently mutated gene in cultured primary neurons. Taken
together, our results highlight the contributions of brain so-
matic mutations to the pathogenesis of SCZ.
METHODS AND MATERIALS

Subject Ascertainment

The DNA from brain (DLPFC, Brodmann area 46) and matched
peripheral (liver or spleen) tissues of 27 patients with SCZ and
26 age-matched control individuals was provided by the
Stanley Medical Research Institute (SMRI). In addition, fresh
frozen human brain (DLPFC, Brodmann area 9) and matched
peripheral (heart or liver) tissues of 5 control individuals were
provided by the National Institute of Child Health and Human
Development. Clinical information for the individuals enrolled in
this study is listed in Table S1 in Supplement 2.

Deep WES

Samples were prepared according to the Agilent library prep-
aration protocol (Agilent Human All Exon V4/V51UTR 50-Mb
kit; Agilent Technologies, Santa Clara, CA) by the SMRI.
Most libraries underwent paired-end deep WES using an Illu-
mina HiSeq 2500 instrument (Illumina, San Diego, CA) ac-
cording to the manufacturer’s protocol. Detailed processes
that we used are provided in the Supplemental Methods in
Supplement 1.

Simulating Low-Level Mutations Calling Through In
Silico Mixing and Variant Calling Using MuTect and
Mutect2

Detailed methods and results are described in Supplement 1.

Quality Controls

To improve the accuracy of analysis, we applied quality control
processes to analysis-ready BAM files such as ContEst and
global imbalance value scores. Details on the quality control
steps are provided in the Supplemental Methods in
Supplement 1.

Somatic SNV Calling

With BAM files that passed quality control, we ran MuTect
version 1.1.7 (http://www.broadinstitute.org/cancer/cga/
mutect) to detect de novo somatic mutations. Detailed
methods are provided in the Supplemental Methods in
Supplement 1.
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Targeted Amplicon Sequencing

To acquire the precision of our strict filtering criteria, we per-
formed TASeq. Details on amplicon sequencing and validation
are provided in the Supplemental Methods in Supplement 1.

Bioinformatic Analysis

Detailed methods for analyzing mutational signature, gene set
enrichment, protein–protein interactions, and the number of
previous studies related to SCZ are described in the
Supplemental Methods in Supplement 1.

Defining Deleterious Mutations

We defined deleterious mutations through previously devel-
oped tools known to be reliable. Detailed requirements for
defining deleterious mutations are described in the
Supplemental Methods in Supplement 1.

Cloning and Mutant Construction

pCIG-SEP:GRIN2B-IRES-tdTomato or pCAG-SEP:GRIN2B
was generated by inserting SEP-tagged rat complementary
DNA from pCI-SEP:GRIN2B (cat# 23998; Addgene, Water-
town, MA) into pCIG-empty-IRES-tdTomato or DsRed-
removed pCAG-DsRed (cat# 6908; Addgene). Details for
cloning and mutagenesis are provided in the Supplemental
Methods in Supplement 1.

Whole Cell Lysate Assay, Cell Surface Biotinylation
Assay, and Western Blot

To quantify the total expression or surface expression of
GRIN2B mutants in human embryonic kidney 293T cells, we
performed western blot analysis with whole cell lysates and
surface biotinylated samples. Details on the in vitro experi-
ments are provided in the Supplemental Methods in
Supplement 1.

Primary Culture, Immunocytochemistry, and Image
Analysis

To explore the effect of mutations detected in GRIN2B on
neurons, we performed primary culture and
immunocytochemistry.

Germline Mutation and Mosaicism Calling

To determine whether any verified single nucleotide poly-
morphisms or reported SNVs were present in the study sub-
jects, we employed the use of GATK-HaplotypeCaller version
3.5 and Mutect2 version 4.1.2.0. Details on calling germline
mutations and mosaicism are provided in the Supplemental
Methods in Supplement 1.

RESULTS

Detection of Low-Level Somatic Mutations in
Matched Brain and Peripheral Tissues From
Patients With SCZ and Control Individuals

We collected genomic DNA from 58 postmortem DLPFC
(Brodmann area 9/46) and matched peripheral (mostly liver)
tissues from 27 patients with SCZ and 31 age-matched control
individuals (Table S1 in Supplement 2). None of the cases had
a diagnosis or history of epilepsy or other neurological
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neurodegenerative disorders. We then performed high-depth
WES with average sequencing depths of 567.03 and 572.43
in brain and peripheral tissues, respectively (Figure S3A in
Supplement 1). Next, we applied multiple quality control
measures to ensure the accurate detection of low-level so-
matic mutations frequently confused with sequencing artifacts
(29–31) (Figure S3B–D; details in Supplement 1). As a result,
we were able to analyze somatic mutations in 93.1% (54/58) of
the brain samples and 70.7% (41/58) of the peripheral samples
(37 liver, 2 spleen, and 2 heart tissues) from 51 subjects. In
addition, we confirmed that there was no correlation between
postmortem interval or potential of hydrogen (pH) of brain and
SNVs (Figure S3F, G in Supplement 1).

We used MuTect to detect somatic mutations because we
found that MuTect showed better performance for detecting
Deep whole exome sequencing (>550x)

Paired brain and peripheral tissue (mostly liver)
from 27 SCZ cases and 31 controls
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Figure 1. Detection of low-level somatic mutations in matched brain and periph
mutations from 27 patients with SCZ and 31 control individuals. To improve the a
files to assess cross-individual contamination and damage that occurred during
used to detect somatic mutations, followed by post–call filtering using empirica
increased the precision of detecting low-level somatic mutations. The three-step
validated by TASeq and Sanger sequencing. (C) Concordance in VAFs between W
.0001). (D) Enlargement of red square in (C): Concordance in VAFs of validated SN
to each other (R2 = .2038, p = .0400). (E) Distribution of VAFs for somatic SNVs in
and liver tissues. *p = .0246. DLPFC, dorsolateral prefrontal cortex; EBscore,
schizophrenia; SNV, single nucleotide variation; TASeq, targeted amplicon sequ
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low-level somatic mutations than Mutect2, MosaicHunter, or
Strelka (Figures S1, S2, and S3E; details in Supplement 1) in
terms of the sensitivity. We initially detected 23,554 somatic
SNVs in brain tissue and 27,593 somatic SNVs in peripheral
tissues as the raw call set. Because MuTect might show more
false-positive calls owing to its higher sensitivity, we exten-
sively excluded false-positive calls and artifacts mimicking
low-level somatic mutations by adopting strict postfiltering
processes, including high base quality scores, empirical
Bayesian score, and manual inspection of sequenced reads
(details in the Supplemental Methods in Supplement 1)
(Figure 1A, B). As a result, we were able to identify 286 somatic
SNVs in the brain and 340 in peripheral tissues (287 SNVs in
liver tissue from 37 cases and 53 in heart and spleen tissues
from 4 cases). To validate the identified somatic mutations
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from our strict pipeline, we randomly picked w37% (47/128
SNVs) of filtered brain somatic SNVs from the brain tissue of
individuals with SCZ and performed ultradeep TASeq
(749,452.43) and Sanger sequencing. If such a mutation was
present as statistically reliable compared with previously esti-
mated background errors, we considered using them as true
calls (32). In the validation sequencing, we found that 68.1% of
postfiltered SNVs were true calls (Figure 1B). Moreover, the
VAFs of brain somatic SNVs found in deep WES were corre-
lated with those in TASeq (Figure 1C, D). Next, we sought to
investigate tissue-specific mutational profiles of somatic SNVs.
To do so, we pooled all filtered somatic SNVs from brain and
liver specimens (n = 286 and n = 287, respectively) and
compared the distribution of VAFs and the average number of
somatic SNVs between them. We found that the liver tissue
showed significantly lower average VAFs (7.8% in brain and
5.5% in liver) and larger average numbers of somatic muta-
tions (5.3 in brain and 7.8 in liver) (Figure 1E, F). Interestingly,
the VAFs and number of liver somatic SNVs observed in our
study were similar to those in previous reports using deep WES
of liver tissue (33–36). These results suggest that deep WES
followed by our strict filtering and analysis of somatic SNVs
could exclude a substantial portion of false-positive calls and
accurately detect low-level somatic mutations.
Mutational Profiles of Somatic Mutations in
Patients With SCZ and Control Individuals

To examine differences in the profiles of somatic mutations
between patients with SCZ and control individuals, we
compared the number of somatic mutations, substitution type,
and distribution of variant types in four groups: Control_Brain,
SCZ_Brain, Control_Liver, and SCZ_Liver (Figure 2). Regarding
the total number of somatic SNVs in patients with SCZ and
control individuals, we found averages of 4.9 (average VAF =
8.0%) and 5.6 (average VAF = 7.6%) brain somatic SNVs,
respectively, and 7.7 (average VAF = 5.5%) and 7.7 (average
VAF = 5.6%) liver somatic SNVs, respectively (Figure 2A).
There was no significant difference in the total number of so-
matic SNVs between the SCZ and control tissues. We also
found that about 39.1% of the brain somatic SNVs in SCZ
specimens and 33.5% in control specimens, and about 47.1%
of the liver somatic SNVs in SCZ specimens and 41.5% in
control specimens, were present in coding regions. Again,
there was no significant difference in the distribution of sub-
stitution and variant types between the groups (Figure 2B, C).
We then categorized somatic mutations as deleterious SNVs
according to damage scores in PolyPhen, LRT, Muta-
tionTaster, MutationAssessor, CADD, and GERP and accord-
ing to population-based allele frequencies (details in the
Supplemental Methods in Supplement 1). We compared the
number of deleterious SNVs between SCZ and control speci-
mens and found no significant difference between the two
groups (Figure 2D). Then, to explore the mutagenic sources of
somatic mutations detected in brain and liver tissues, we
observed mutation signatures of the somatic SNVs in the tis-
sues using deconstructSigs (37). In both organs, signature 1
(known to be related to cytosine to thymidine deamination),
which spontaneously occurs during cell proliferation, was
found to be present in 61.8% of brain tissue and 59.8% of liver
4 Biological Psychiatry - -, 2021; -:-–- www.sobp.org/journal
tissue (22) (Figure 2E, F). Overall, we were able to detect
mutational signatures compatible with spontaneous accumu-
lation of somatic mutations during cell proliferation in both the
brain and liver. Furthermore, we explored the correlation be-
tween age and the proportion of C-to-T substitution that is
prominent in both signatures and figured out that the propor-
tion of SNVs with C-to-T substitution in the brain shows pos-
itive correlation with age and might arise from defective DNA
mismatch repair (Figure S3H in Supplement 1) (38–40). Alto-
gether, these results indicated that there are no quantitative
differences in the mutation profiles (e.g., number, substitution
type, distribution) of somatic SNVs between patients with SCZ
and control individuals.
Brain Somatic Mutations Found in Patients With
SCZ Are Enriched in Genes Associated With SCZ-
Relevant Signaling Pathways

Next, we explored the involvement of the observed somatic
mutations in the pathogenesis of SCZ. First, we examined
mutation burden per exonic length between groups or between
cases and controls to exclude gene length bias. There was no
difference between groups or cases and controls (Figure S4A,
B in Supplement 1). In addition, we compared the mutational
burden per transcript length with deleterious mutations
because deleterious mutations are in exons. As a result,
deleterious mutation burden between groups was not different,
and patients with SCZ did not have an increased mutational
burden per transcript (Figure S4C, D in Supplement 1). Next,
we performed gene length adjusted gene set enrichment tests
with DNENRICH software (41). Specifically, we sought to
extract significant pathway terms for patients with SCZ (for
both brain and liver tissues) compared with control individuals
or for SCZ_Brain compared with SCZ_Liver, Control_Brain,
and Control_Liver. When we compared the genes with dele-
terious mutations, we found that in addition to dopaminergic
synapse and neuroactive ligand–receptor interaction, gluta-
matergic synapse and long-term potentiation pathways were
significantly enriched in patients with SCZ, particularly in brain
tissue (Figure 3A and Figure S4F in Supplement 1).

We then sought to determine which specific genes would
more likely be engaged in the pathogenesis of SCZ by
examining literature-based evidence and protein–protein in-
teractions. To do so, we estimated the protein–protein in-
teractions of each protein putatively affected by the deleterious
somatic mutations detected in the brain tissue from the pa-
tients with SCZ and control individuals. Remarkably, GRIN2B
ranked as high as second, showing interactions with numerous
proteins (Figure 3B). In addition, using the text-mining engine
DigSee (42,43), we found that GRIN2B was the most frequently
studied gene in SCZ among all 35 genes with deleterious so-
matic mutations identified from brain tissue from the patients
with SCZ and control individuals (Figure 3B). Surprisingly, in
our cohort, 2 patients were found to carry deleterious brain
somatic mutations on GRIN2B (Table 1 and Table S3 in
Supplement 2). Overall, these results indicated that the genes
affected by the noted brain somatic mutations are associated
with glutamate signaling pathways and that among them
GRIN2B could be a target gene in the pathogenesis of SCZ.
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Figure 3. Genes with somatic single nucleotide variations found in brain tissue from patients with SCZ are associated with SCZ-relevant signaling pathways. (A)
Enriched KEGG pathways of genes with deleterious mutations in the DNENRICH tool. The straight vertical line (green) running through the bars represents the
threshold p value for the significant enrichment of a particular pathway. A multiple testing–corrected p value was calculated using the Benjamini–Hochberg method
to control the rate of false discoveries in statistical hypothesis testing. (B) PPI weights and literature-based evidence of genes with deleterious somatic mutations
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comparison tests. DIV, days in vitro; N.A, not available; PPI, protein–protein interaction; SCZ, schizophrenia; WT, wild-type.

Brain Somatic Mutations in Schizophrenia
Biological
Psychiatry
Deleterious Brain Somatic Mutations in GRIN2B
Can Disrupt the Synaptic Localization of Its
Encoded Protein

In light of the above, we sought to investigate the detrimental
impact of somatic SNVs on the function of GRIN2B in vitro.
6 Biological Psychiatry - -, 2021; -:-–- www.sobp.org/journal
Among deleterious somatic SNVs found in GRIN2B, the sites
of mutation were located on the signal peptide and C-terminal
domains, both of which are important for the synaptic local-
ization of GRIN2B (44,45) (Figure 3C). Based on this evidence,
we hypothesized that brain somatic mutations in GRIN2B
might disrupt GRIN2B localization on the surface of dendrites,

http://www.sobp.org/journal


Table 1. Deleterious Mutations in Genes of Enriched Canonical Pathways in Patient Brain Tissue

Case Gene Mutation VAF (%)

Pathway

Glutamatergic Synapse HD and ALS

SCZ03 GRIN2B NM_000834.3: c.50C.T
(p.Ala17Val)

1.25 Risk allele leads to glutamate
receptor hypofunction in
patients with SCZ (73,74)

GRIN2B gene variation
attribute age at onset in HD,
utility as a biomarker for ALS
(84,109)

SCZ08 GRIN2B NM_000834.3: c.3286G.A
(p.Ala1096Thr)

1.08

SCZ05 SLC1A2 NM_004171.3: c.1682C.T
(p.Ala561Val)

1.45 Yin the superior temporal
gyrus and hippocampus of
patients with SCZ (75)

Alterations in EAAT expression
have been detected in
epilepsy, HD, and ALS
(110,111)

SCZ18 DNAH1 NM_015512.5: c.401C.A
(p.Pro134Gln)

1.57 – Identified as
neurodegenerative disorder-
relevant variant (112)

gnomAD_AF (%) was not available.
AF, allele frequency; ALS, amyotrophic lateral sclerosis; EAAT, excitatory amino acid transporter; HD, Huntington disease; SCZ, schizophrenia;

VAF, variant allele frequency.
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leading to SCZ symptoms through a defect in neuronal sta-
bility. To test this, we first examined whether the identified
mutations affect the expression and localization of GRIN2B
itself in human embryonic kidney 293T cells. We found that
both of the brain somatic mutations decreased the surface
expression of GRIN2B, not total amounts thereof (Figure S6B–
E in Supplement 1). Furthermore, to observe defective syn-
aptic localization of GRIN2B mutants in neurons, we trans-
fected a plasmid construct, pCAG-SEP:GRIN2B, into primary
cortical neurons isolated from embryonic day 16.5 mice and
performed immunofluorescence staining after 14 days in vitro
with SEP, a green fluorescent protein–based super-ecliptic
pHluorin that fluoresces green when located on or outside
of the cell membrane, not inside of cellular vesicles (46)
(Figure 3C). Interestingly, we observed significantly decreased
GRIN2B puncta density in both GRIN2B mutant groups,
suggesting that brain somatic mutations found in GRIN2B
cause defective dendritic surface localization (Figure 3D, F). In
addition, we observed significant decreases in the density of
GRIN2B puncta colocalized with PSD95, thereby showing
that GRIN2B mutants cannot properly localize on post-
synapses (Figure 3E, G). Meanwhile, one study showed that
mutations in the C-terminal domain of GRIN2B from patients
with autism decreased dendritic spine density (47). Thus, we
also checked PSD95 puncta density in dendrites of cultured
neurons and found that the density of PSD95 puncta was
significantly decreased, suggesting the disruption of dendritic
spine morphology in GRIN2B p.A1096T-expressing neurons
(Figure S6A in Supplement 1). Taken together, these results
indicated that brain somatic mutations in GRIN2B disrupt the
localization of its encoded protein to dendrites and hinder
proper synapse formation.

Deleterious Germline, Mosaicism, and Brain
Somatic Mutations in SCZ-Risk Genes Contribute
to SCZ

We tried to elucidate the genetic architecture of SCZ, which
might be categorized into germline, mosaicism, and brain so-
matic mutations, according to differential time points of the
mutations (Figure 4). Throughout this study, we observed that
15.4% (4/26) of patients with SCZ carried deleterious brain
B

somatic mutations in known SCZ-risk genes, including
GRIN2B, SLC1A2, and DNAH1, whereas none of the control
individuals did (Table 1 and Figure S5D in Supplement 1).
Using Fisher’s exact test for comparison, we have confidence
that deleterious brain somatic mutations in known SCZ-risk
genes had a significant effect on our cohort (p = .0473).

In addition to the brain somatic mutations, however,
germline mutations and mosaicism might also contribute to the
development of SCZ. To discover germline mutations that
possibly contribute to the aberrant genetic structure of SCZ,
we used HaplotypeCaller (48) and called germline single
mutations from our dataset. We then adopted a previously
published genome-wide association study dataset covering
SCZ-risk genes (9). As a result, we found that 11.5% (3/26) of
the patients with SCZ carried rare deleterious germline muta-
tions in known SCZ-risk genes. Interestingly, however, we
discovered that 21.4% (6/28) of the control individuals
exhibited deleterious mutations in the same SCZ-risk genes.
Through Fisher’s exact tests, we found that the frequency of
deleterious germline mutations did not affect our cohort.

To identify mosaicism, we also examined whether patients
with SCZ carried deleterious mosaicism shared between brain
and peripheral (liver, spleen, or heart) tissues in SCZ-risk
genes. To do so, we performed Mutect2 (49) and called mu-
tations shared in both regions and compared the average
number and the average VAFs of mosaicism SNVs between
patients with SCZ and control individuals. We found that the
two groups had similar average counts (0.6 and 1, respectively)
and VAFs (5.9% and 6.2%, respectively) (Figure S5A, B in
Supplement 1) and that brain and peripheral tissues did not
have differences in VAFs (6.2% and 6.0%, respectively)
(Figure S5C in Supplement 1). Furthermore, we extracted SCZ-
risk genes with rare deleterious mosaicisms (CADD . 20,
gnomAD , 0.01%) from our cohort. We then compared pre-
viously published exome sequencing-datasets covering SCZ-
risk genes (50,51) and found that 3.8% (1/26) of the cases
carried rare deleterious mosaicisms, although no gene over-
lapped with the genome-wide association study dataset (9).
We compared the frequency of deleterious mosaicisms in
patients with SCZ and control individuals by Fisher’s exact
test, and there was no significant difference, possibly owing to
the small size of our cohort. Taken together, our results
iological Psychiatry - -, 2021; -:-–- www.sobp.org/journal 7
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suggest that deleterious brain somatic mutations in SCZ-risk
genes might contribute significantly to SCZ (50).
DISCUSSION

In this study, we outlined the ways in which low-level somatic
mutations may contribute to the pathogenesis of SCZ by
performing deep WES on brain and matched liver (or spleen
and heart) tissues from 27 patients with SCZ and 31 control
individuals, followed by strict validation sequencing and
comprehensive bioinformatic analysis. As a result, we were
able to identify 286 somatic SNVs in the brain and 340 in pe-
ripheral tissues. Interestingly, there were no quantitative dif-
ferences in the mutation profiles (e.g., number, substitution
type, distribution) of somatic SNVs between patients with SCZ
and control individuals. However, we found that deleterious
somatic mutations detected in the brains of patients with SCZ
were enriched in SCZ-related pathways, including gluta-
matergic synapse, dopaminergic synapse, and long-term
potentiation pathways. In addition, we discovered that brain
8 Biological Psychiatry - -, 2021; -:-–- www.sobp.org/journal
somatic mutations in GRIN2B disrupted the localization of
GRIN2B to the surface of dendrites in cultured primary
neurons.

The pathways that were enriched with the deleterious so-
matic mutations have previously been reported to be related to
SCZ. Previous genetic studies have reported the positive ge-
netic correlation of Huntington disease, AD, and amyotrophic
lateral sclerosis disease with SCZ (52–55). In AD, Soheili-
Nezhad et al. uncovered that genes related to synaptic regu-
lation, such as synaptogenesis and glutamate receptor
signaling pathways, are dysregulated somatically in affected
brain regions, the hippocampus and temporal cortex (56). In
addition, similar low-level brain somatic mutations have been
discovered in hippocampal formations of AD brains, where
neurofibrillary tangles initiate, and have been associated with
dysregulation of tau phosphorylation (22). SCZ shares similar
pathophysiological features with AD, including regional brain
dysfunction and synaptic deficits in affected regions. Previous
research showed dysregulation of autophagy only in the
affected brain region—the hippocampus— and not in blood
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(57). Furthermore, disruption of long-term potentiation and
neuroactive ligand–receptor interaction have been implicated
in SCZ (58–62). In addition, abnormal regulation of dopamine
has been found to induce the symptoms of SCZ (63,64). In line
with our results, numerous studies have shown that the glu-
tamatergic synapse pathway is directly involved in the patho-
genesis of SCZ (65,66); NMDA receptors sensing glutamate
regulate excitatory neurotransmission and neuronal develop-
ment and plasticity (67), and impairment thereof has been
found to induce symptoms of SCZ (68–71). Furthermore,
disruption of GRIN2B in glutamatergic synapses can lead to an
imbalance between excitation and inhibition, thereby eliciting
psychiatric symptoms (72).

Interestingly, 3 patients with SCZ carried deleterious mu-
tations in genes encoding proteins involved in glutamate
receptor signaling (73–77). These mutations were SLC1A2
p.A561V (in case SCZ05), GRIN2B p.A17V (in case SCZ03),
and p.A1096T (in case SCZ08), which have never been re-
ported in the general population (e.g., gnomAD). The SLC1A2
gene encodes EAAT2, which plays a role in clearing gluta-
mate from synapses. An association between genetic varia-
tion in SLC1A2 and SCZ has been suggested in several
studies (78,79). Meanwhile, GRIN2B encodes a subunit of the
NMDA receptor, which plays a key role in the postsynapse.
Researchers have shown that disruption of GRIN2B induces
an imbalance in excitatory/inhibitory synaptic drive (80).
GRIN2B has been reported to be associated with several
psychiatric diseases, including SCZ, autism, and intellectual
disorder, and with other neurological diseases such as epi-
lepsy (24,47,81–88). General disease-causing mutations
associated with early-onset intellectual disability and devel-
opmental/neurological disorders accompanied by epilepsy
are detected as germline mutations or mosaicism with high
frequency, and most of them are in ligand-binding and
transmembrane domains (89,90). Disruptive mutations in
these domains alter GRIN2B function such as ligand binding
or ion channel properties (91,92). On the other hand, most
psychiatric disorder–related mutations, especially SCZ-
associated ones, induce mislocalization of GRIN2B, and
these mutations are located on the C-terminal domain
(47,93). The N-terminal and C-terminal domains of GRIN2B
contain posttranslational modifications, such as phosphory-
lation, and protein-interacting sites that are crucial for re-
ceptor trafficking and localization (67). Deleterious mutations
in these domains might interrupt the interaction with other
proteins and can alter GRIN2B localization. Mutations in
GRIN2B are also known to be associated with SCZ
(82,83,88). In addition, many studies have shown that dys-
regulation of surface distributions of GRIN2B-containing
NMDA receptors can induce defects in neuronal stability,
plasticity, and spine density (44,47,67,94), which are impor-
tant hallmarks in the etiology of several cognitive and psy-
chiatric disorders (47,95–101). In this study, we showed that
brain somatic brain mutations in GRIN2B are in N-terminal
and C-terminal domains and lead to reduced expression of
GRIN2B along dendrites. These brain somatic mutations in
GRIN2B might alter the function of a subset of neurons with
mutations and related circuits. To our knowledge, this is the
first evidence to indicate that brain somatic mutations in SCZ
have a deleterious functional impact on glutamate receptors.
B

Deep WES in matched brain–peripheral tissues allowed us
to detect brain somatic SNVs at low-level VAFs, with 59.8%
(171/286) of the detected brain somatic variants being present
at VAFs lower than 5%. The deleterious somatic mutations in
GRIN2B presented in SCZ brains with VAFs as low as 1.25%
(in case SCZ03) and 1.08% (in case SCZ08). Previous studies
have shown that a subset of neurons with a disrupted gene in
the focal cortical region is sufficient to cause dysfunction of the
entire brain, thereby leading to neuropsychiatric symptoms or
related disorders (20,23–25,27,28,102–105); for example, focal
disruption of Arp2/3 in the frontal cortex leads to psychiatric
symptoms, such as abnormal locomotor behavior, by dis-
turbing cortical-to-midbrain circuits (106). Somatic activating
mutations in mTOR pathway genes with VAFs w1% in the
focal cortical region cause spontaneous behavioral seizures in
mice (19). In addition, low-level BRAF V600E somatic muta-
tions arising during brain development cause intractable epi-
lepsy (107). Loss of function somatic mutations in SLC35A2,
which encode UDP-galactose transporter in Golgi complex, is
associated with focal epilepsy (21,26). Focal deletion of
NaV1.1 sodium channel in GABAergic (gamma-aminobutyric
acidergic) neurons is sufficient to cause epilepsy (108).
Consistent with our study, these previous studies showed the
possibility that focal neuronal changes in synaptic structure,
channel conductivity, or electrophysiological activity elicited by
low-level brain somatic mutations can alter neuronal circuits
and lead to neuropsychiatric disorders.

In line with this idea, it could be possible that our newly
detected brain somatic mutations on GRIN2B might induce
psychiatric symptoms through disruption of GRIN2B localiza-
tion in the focal area of the DLPFC and related neural net-
works. This will be an interesting area of future research.
Overall, our study suggests the importance of low-level dele-
terious brain somatic mutations into the molecular genetic
architecture of SCZ and potentially other psychiatric diseases.
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